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The probabilistic model

This is the main chapter of this dissertation. We introduce the probabi-

listic model (a non-random walk in Γ), prove some basic properties and the

positive linear growth.

5.1

Definition

We will now interpret the dynamics of F as a walk in Γ. We will study

how F transfers the measure µ from S0 to other fundamental regions of the

form σS0, with σ ∈ Γ. We set

µ(σ) = µ(S0 ∩ F−1(σS0)).

As mentioned earlier, we allow ourselves to identify S and S0.

Remark 5.1.1. µ should not be seen as a random walk in Γ. For instance,

µ(S0 ∩ F−1(σ1S0) ∩ F−2(σ1σ2S0)) is not necessarily equal to µ(σ1)µ(σ2). One

can think of this as a lack of indepence (or existence of correlation) between

the iterates of F .

We set Q to be the elements of Γ that actually “act” in this walk, that

is,

Q = {σ ∈ Γ : µ(σ) > 0}.

There is also a natural map g : D → Γ that associates to a point x of D

the deck transformation σ such that x lies in σS0. We can then associate, to

(almost) every point x of D, a sequence w(x) in QN that tells us how x moves

among the fundamental regions:

w(x) = (g(F n−1(x0))
−1g(F n(x0)))n>0.

This sequence is constructed in such a way that w1·. . .·wn(x) = g(F n(x)).

If T : QN → QN is the standard shift map, it is imediate that w ◦ f = T ◦ w.

Hence, by equipping QN with the probability measure P = w∗µ we get a

measurable conjugation between T and f . In particular, T becomes ergodic.
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5.2

Basic properties

We begin by proving that Q contains a non-trivial element of Γ and is

finite.

Lemma 5.2.1. There exists σ ∈ Q such that σ 6= id.

Proof. Since µ(Γ) = 1 and Γ is countable, Q cannot be empty. Suppose that

Q = {id}, which implies µ(id) = 1. Hence, for almost every x0 in S0, the

image F (x0) is also in S0. Poincaré’s recurrence theorem (Theorem A.1.1),

applied to F |S0
, tells us that almost every point of S0 is recurrent.

The idea is to use this fact to construct compactly supported perturba-

tions of F with periodic points. Fix x0 recurrent by F and ε0 > 0. If d is the

hyperbolic metric, the absence of fixed points for F (by construction) implies

that d(y, F (y)) attains a strictly positive infimum δ on the closed ball Bε0 , of

center x0 and radius ε0. Consequently, a map Φ : D → D which coincides with

F outside Bε0 and such that d(F (y), Φ(y)) < δ for every y cannot have fixed

points.

Let ε < min ε0, δ and N a positive integer such that d(x0, F
N(x0)) < ε.

We choose a neighborhood V of x0 contained in Bε0 such that FN(x0) is in V

but F i(x0), for 0 < i < N is not. There exists a diffeomorphism f isotopic to

the identity, supported in V , such that h(FN(x0)) = x0. We set Φ = h ◦ F . It

is evident that Φ coincides with F outside Bε0 , that d(F (y), Φ(y)) < δ and

ΦN(x0) = (h ◦ F )(FN−1(x0)) = x0.

By Brouwer’s translation arc theorem (Theorem A.2.3), Φ has a fixed

point and we have reached a contradiction

Lemma 5.2.2. Q is finite.

Proof. We may suppose that S0 is an ideal hyperbolic polygon, with a finite

number of ideal points (since S is a compact surface minus a finite number of

points). It suffices to show that there are neighborhoods in S0 of each of these

ideal points whose images intersect a finite number of translates σS0. Once

this is done, the complement of these neighborhoods in S0 is compact and the

desired property will follow.

Let then tildey be one of the ideal points. It corresponds to a fixed point

y that was removed from M . Now, let V be a topological disk around y.
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The essential point of the proof is the way this neighborhood rotates around

y. Note that if the image of V ∩ S0 by F were to intersect infinitely many

translates σS0, a radius of V would be mapped to a curve that spirals “wildly”

around y. More precisely, this curve would contain segments with arbitrarily

large winding number. Since f is differentiable at y, taking V to be sufficiently

small (so that the points in V rotate around y acording to the differential

of f at y) assures us that this does not happen. The proof of the lemma is

complete.

Now, using the subadditive ergodic theorem (Theorem A.1.3), we show

that our walk in Γ has linear growth. However, we note that, a priori, this

linear growth may be zero.

Lemma 5.2.3. There exists a constant m ≥ 0 such that

lim
n→∞

1

n
|g(F n(x̃))| = m

for µ-almost every point x in S. ( | · | is a fixed word norm for Γ)

Proof. Set Ω = QN and denote by Xi : Ω → Q the canonical projections.

Define the measurable maps

Wn = |X1 · . . . · Xn|.

W1 is integrable:
∫

Ω

W1 dP =
∑

σ∈Q

|σ| · µ(σ) < ∞.

The triangular inequality yields

Wn+k = |X1 · . . . ·Xn+k| ≤ |X1 · . . . ·Xn|+ |Xn+1 · . . . ·Xn+k| = Wn + Wk ◦ T n.

Let W be the limit of 1

n
Wn, as in Theorem A.1.3. Since W is T -invariant and

T is ergodic, W must be constant P-a.e..

5.3

Positive linear growth

In this section we will prove that the linear growth just established is

actually strictly positive, that is, that m > 0. We choose a basis G for the free

group Γ. With respect to G, the Cayley graph of Γ is a tree and every element

of Γ admits an unique expression as a word in G. From now on, | · | will denote

the word norm with respect to this generating set. By simple replacement, we

rewrite the sequences w(x) = w1w2 . . . (wi in Q) as wG(x) = wG
1 wG

2 . . . (wG
i in
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G). We will denote by E the set of points x in S such that wG(x) contains

arbitrarily long trivial subwords. Since E is f -invariant, its µ-measure is either

0 or 1. We shall examine both cases separately and show that µ(E) = 0 implies

m > 0 and that µ(E) = 1 is not possible. But first, we remark that the rotation

vector of f gives us a sufficient condition for the positivity of m.

Lemma 5.3.1. If the rotation vector of f is not zero, then m > 0.

Proof. Since the rotation vector is not zero, there exists an element γ from

the basis G such that the frequencies of γ and γ−1 in the sequence wG(x) of

a µ-generic point x are different. Since Γ is free, even after reducing wG(x) by

removing the trivial subwords, either γ or γ−1 remain with positive frequency.

This yields m > 0, again because of the freeness of Γ.

5.3.1

Case 1: µ(E) = 0

Lemma 5.3.2. If µ(E) = 0, then m > 0.

Proof. We choose N sufficiently large such that

{x ∈ S : wG(x) contains trivial subwords of length at most N}

has positive measure and then we choose x in this set. We define

τ(n) = wG
1 · . . . · wG

n(x). It follows that the smallest integer n1 such that

|τ(n)| ≥ 1 for every n ≥ n1 exists and satisfies n1 ≤ N + 1. Suppose by

induction that the smallest integer nj such that |τ(n)| ≥ j for every n ≥ nj

exists and satisfies nj ≤ j(N + 1). Now we consider τ(nj + k), for k ≥ 0. By

assumption, τ(nj + N + 1) 6= τ(nj).

We claim that |τ(nj + N + 1)| ≥ j + 1. Assume for a contradiction that

|τ(nj + N + 1)| = j. Since the Cayley graph of Γ with respect to G is a tree,

this assumption would imply the existence of an index i, with 0 < i < N + 1

such that |τ(nj + i)| = j − 1. This contradicts the definition of nj and thus

proves the claim.

Furthermore, for k ≥ N + 1, |τ(nj + k)| ≥ j + 1, because |τ(nj + k)| = j

would imply that τ(nj + i) = τ(nj) for an index i > N +1 (again thanks to the

tree structure of the Cayley graph). Finally, this also leads to a contradiction

because it implies that wG(x) contains a trivial subword longer than N . We

conclude then that the smallest integer nj+1 such that |τ(n)| ≥ j + 1 for every
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n ≥ nj+1 exists and satisfies nj+1 ≤ (j + 1)(N + 1). Taken together, all the

preceding provides

lim
n→∞

1

n
|τ(n)| = lim

j→∞

1

nj

|τ(nj)| ≥
j

j(N + 1)
> 0.

However, if we set mi =
∑i

l=1
|wl|, we also have

lim
n→∞

1

n
|τ(n)| = lim

i→∞

1

mi

|τ(mi)| = lim
i→∞

1

mi

|w1·. . .·wi| =

(

lim
i→∞

i

mi

)(

lim
i→∞

1

i
|w1 · . . . · wi|

)

,

where

lim
i→∞

mi

i
=

∑

σ∈Q

µ(σ) · |σ| > 0.

5.3.2

Case 2: µ(E) = 1

Lemma 5.3.3. If µ(E) = 1 then the ω-limit of almost every point in S

intersects Fix(f). In other words, the orbit of almost every point in S is not

precompact (in S).

Proof. Suppose, for a contradition, that x is in E and that its orbit stays away

from Fix(f). It follows that the orbit stays within a compact region K of S (the

corresponding image of K in S0 will still be denoted by K). By assumption,

wG(x) has arbitrarily long blocks that are equal to the identity in Γ. This means

that we can find integers nk > mk such that nk − mk → ∞ and g(Fmk(x0))

and g(F nk(x0)) are at a distance bounded by 2L, where L = maxσ∈Q |σ|. Next

let

K2L =
⋃

|σ|<2L

σK.

We note that K2L is still compact. By suitably translating the Fmk(x) and

extracting subsequences, we construct a sequence xk satisfying the following

conditions:

1. xk lies in K for every k in N;

2. for each k there exists lk such that yk = F lk(xk) is in K2L;

3. lk is strictly increasing;

4. Both xk and yk are convergent.
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Restricted to K2L, the hyperbolic distance d(F (p), p) is bounded from

below by δ > 0. We shall construct a diffeomorphism Φ that coincides with F

outside K2L and such that d(Φ(p), F (p)) < δ/2. Note that this diffeomorphism

cannot have fixed points and this is the fact that will give the final contradition.

Choose positive integers M and N , with M < N , sufficiently large so

that d(xM , xN) < δ/4 and d(F−1(yM), F−1(yN)) < δ/4. Let U be an open

set of diameter smaller than δ/2, containing xM and xN but not containing

F j(xN) for 0 ≤ j ≤ lN − 1. Analogously, let V be a neighborhood of

F−1(yM) and F−1(yN) of diameter smaller than δ/2, not containing f j(xM) for

0 ≤ j ≤ lM−2. Let h be a diffeomorphism isotopic to the identity, supported on

U ∪V and such that h(xM) = xN and h(F−1(yM)) = F−1(yN). Let Φ = F ◦h.

It follows that

ΦlN (xM) = ΦlN−1(F (xN)) = yN

and

Φ−lM (yN) = Φ−lM+1(h−1(F−1(yN))) = Φ−lM+1(F−1(yM)) = xM .

Hence, ΦlN−lM (xM) = xM , with lN − lM > 0. Since Φ is isotopic to the identity

and D homeomorphic to the plane, Brouwer’s translation arc theorem ensures

Φ has a fixed point.

Corollary 5.3.4. m > 0

Proof. Since supp(µ) is compact, invariant and of full measure, the orbit of

almost every point remains within supp(µ) and is, hence, precompact. This

shows that Case 2 is not possible.

Corollary 5.3.5. If the rotation vector of f vanishes, then the subgroup 〈Q〉

generated by Q in Γ is free of rank 2 or higher.

Proof. 〈Q〉 is free because it is a subgroup of a free group. If its rank were

1 or 0, it would be abelian and the vanishing rotation vector would imply

m = 0.
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